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The tensile fracture stress of capsule-shaped tablets 

P. STANLEY*, J. M. NEWTONt,  *Simon Engineering Laboratories, University of Manchester, Manchester, M I 3  9PL 
and ?Pharmacy Department, Chelsea College, University of London, Manresa Road, London S W3 6LX,  U . K .  

A recent paper by Gold et al (1980) has suggested that 
the determination of the mechanical strength of capsule- 
shaped tablets can be undertaken by what would be 
described, in the field of material science, as a flexure 
test. This type of test has been proposed for conven- 
tional tablets by David & Augsburger (1974). A feature 
of such a test is that under the correct conditions of 
loading, the specimen will be subjected to a pure 
longitudinal tensile stress along a line on the surface 
opposite to that on which the load is applied; see Fig. 1. 
The loading and support point details are important in 
this form of test; correct conditions are readily recog- 
nizable by the occurrence of a clean break across or 
near to the loading line of the specimen. The purpose 
of the present communication is to show how it is 
possible to determine the tensile strength of capsule- 
shaped tablets from this type of flexure test. 

In general, for a beam specimen subjected to bending, 
the tensile fracture stress ur can be calculated from the 
following expression 

MY,,, 
Uf = - 

I 

where M is the bending moment at fracture, ymSx is 
the normal distance from the neutral axis to the 
furthermost point in the part of the cross-section which 
is under tension, and I is the second moment of area 
of the cross-section. 

Rectangular cross-section. For a beam of rectangular 
cross-section, width b and depth (i.e. thickness) d, 

bda I = -  
12 

and 

. .  d 
Ym.. = - 2 (3) 

For the symmetrical three-point bending configuration 
shown in Fig. 1, the maximum bending moment for 
such a specimen is 

where W is the fracture load, and 1 is the distance 
between the supports. (The maximum bending moment 
expression used by David & Augsburger 1974, is correct 
but the argument leading to their final equation for the 

tensile strength and the final equation itself are invalid.) 
Thus at failure, from the above equations: 

W1 d 12 
4 2 bda 

. .  . .  Of = 

3W1 
2bda 

- -- 

Capsule cross-section. The section of a capsule-shaped 
tablet is now considered; the definitive dimensions are 
given in Fig. 2. The tensile fracture stress ur can be 
determined as before from equation ( I ) ,  but, whilst the 
bending moment expression (eqn 4) remains unchanged, 
the values of I, the second moment of area of the cross- 
section, and ymax have to be redetermined. 

The first step is to obtain the second moment of area 
of one curved segment (the shaded area in Fig. 2) about 
a parallel axis though its centre of area, I,,-see Fig. 3. 
To do this it is necessary to calculate the angle a, sub- 
tended by the curved portion of the surface at its centre, 
in terms of the dimensions given in Fig. 2. If the radius 
of the curved surface of the segment is denoted by r,  
then 

. .  ’ ’ (7) 
b 

tan a = - 
2(r - a) 

Also, from the ‘intersecting chords’ theorem, 

ba - = (2r - a)a 
4 

. . 

from which 

(9) 

W 

t Correspondence. FIG. 1 .  Flexure test: loading and support. 
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It follows from equations (7) and (9) that 

tan a = ___ . .  . .  
2ab 

be - 4a2 

Using equation (10) the value of a is readily determ- 
ined from the tablet dimensions. For normal tablet 
dimensions it is likely that the value of a will be greater 
than 45". For sections in which a>45", Roark &Young 
(1975) give the following formula for I,,, the second 
moment of area about an axis through the centre of 
area and parallel to the flat edge of the segment: 

I,, = --[a - sincccosa + 2sin3orcosa - 
r4 

] (11) 
16 sinS tc 

9(a - sin a cos a )  

The numerical value of I,, can therefore be derived from 
equations (9), (10) and (11). The magnitude of the 
distance ylb, the normal distance of the centre of area 
of the segment from the flat edge (see Fig. 3), is given by 
the expression (Roark & Young 1975): 

1 2 sin3cc 
3(a - sin a cos a )  

- cos a Y l b  = r 

from which the numerical value follows. The area of the 
curved segment A (Roark & Young 1975) is given by 

A = r2 (a - sin a cos a )  . . . .  . . (13) 

Using the 'parallel axis' theorem (Timoshenko & 
Young 1962) the second moment of area of the full 
section about the axis AA through the centre of area 
now follows as: 
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Nomenclature 
height of curved segment 
area of curved segment 
width of beam or tablet 
depth or thickness of beam or a tablet dimension 
(see Fig. 2) 
second moment of area of cross-section 
second moment of area of cross-section of 
capsule-shaped tablet 
second moment of area of cross-section of curved 
segment of capsule-shaped tablet 
distance between support points of beam or tablet 
bending moment 
radius of curved surface of the capsule-shaped 
tablet 
fracture load in three-point bending 
normal distance from the neutral axis to the 
furthest point in the part of the cross-section 
which is in tension 
normal distance of the centre of area of segment 
from the flat edge 
Half-angle subtended by segment formed by 
curved surface of tablet 
tensile fracture stress 

FIG. 2. Cross-section of capsule-shaped tablet. 

This, the required quantity, can be evaluated from the 
tablet dimensions using equations ( l l ) ,  (12) and (13). 

The quantity yma, (equation (1)) for this case is given 
by 

. .  d 
Ym.. = - 2 + a . . 

The final stage in the process is to substitute into 
equation (1) to give the tensile fracture stress in terms 
of the fracture load and the tablet dimensions: 

W1 (d/2 + a) . .  . . (16) 

Thus knowing tablet dimensions and the fracture 
load it is possible to arrive at a fundamental value for 
the tensile fracture stress of capsule-shaped tablets from 
a flexure test experiment. (It has been assumed that the 
applied load W is distributed across the width of the 
tablet and contact effects at the loading point have 
been ignored.) 

If a typical capsule-shaped tablet is considered, it is 
interesting to observe in equation (14) that ylb may be 

q = -____ 
4 I A A  

I 

I 
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FIG. 3. Details of segment. 
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negligible compared with d/2 and I,, may be negligible 
compared with Ad2/4. It would follow as an approxi- 
mation that 
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problem. (It should be mentioned that the correspond- 
ing approximate tensile fracture stress (eqn 17) would 
err on the high side of the true value.) 

Ad2 bd3 
I** 2: - + - 2 12 
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Punch tip geometry effects on powder compression 

DAVID SIXSMITH, Department of Pharmacy. Faculty of Medicine, University of Nairobi, P .O.  Box 30197, Nairobi, 
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Many workers have studied the compression process 
and found it to exhibit distinct phases (Seelig & Wulff 
1946; Train 1956; Marshall 1970). During the major 
densification stage corresponding to particle deforma- 
tion and/or fracture and recombination a linear 
relationship has been shown to exist between tablet 
relative volume and log compressional force (Walker 
1923), and between tablet porosity and the reciprocal of 
log compressional force (Higuchi et al 1954). All these 
studies were carried out using flat faced punches. 
Aulton et al (1975) however, demonstrated a variation 
in surface hardness of tablets with alteration in punch 
face geometry. 

To investigate the effect of punch shape on previously 
found relationships tablets were prepared using four 
different shaped punch faces namely flat faced, bevelled, 
concave and deep concave. The tablets were prepared 
from Avicel PHI01 (F.M.C. Corpn. Marcus Hook, 
U.S.A.). This powder was granulated before com- 
pression using Avicel: water ratio of 5 : 2 ,  mixed for 
10min in a Z blade mixer (Baker Perkins, 
Peterborough) passed through a 210pm mesh on an 
oscillating granulator (Manesty Machines, Liverpool), 

dried to a final moisture content of 5 %  w/w and re- 
passed through a 210 pm mesh. The moisture content 
was determined using an Ohaus moisture balance. The 
prepared granules were mechanically sieved and the 
105-108 pm fractions retained and stored in sealed jars 
un t i I compressed. 

Tablets were prepared using a 30 n1.m i.d. punch and 
die set and a hydraulic press, at  five levels of com- 
pressional force (FA) 4.9 kN; 9.8 kN; 24.5 kN;  49.0 kN 
and 98.1 kN. 

The thickness of each tablet was measured, im- 
mediately after ejection from the die, using a micro- 
meter gauge, fixed rigidly on a metal stand, and capable 
of measuring 0.01 mm. The average height of four 
tablets was found and used in calculations of tablet 
relative volume (R.V) and tablet porosity (c), these 
values being calculated assuming the punch tip profile 
to be identical with that of the tablet. 

From Tables 1 and 2 it can be seen that for the flat 
faced punch the previously deduced relationships, 
namely R.ValogIoFA (Walker 1923) and reciprocal of 
log,, F,ar (Higuchi et al 1954) are also valid in this case. 
When considering the shaped tablets the same relation- 

Table 1 .  Relationship between tablet relative volume and compressional force for all punch tip geometries. 

Relative volume (R.V.) 

Compression Concave Deep concave 
( 4  (4 

2.9 1 2.56 
force (kN) Flat Bevelled (a) (b) 

4.9 2.06 2.08 2.48 2.51 
9.8 

~ 

i.7h 1.79 2.219 2.10 2.61 2.08 - . _  - . _  - 
1.39 1.35 1.60 
1.23 1.25 1.54 
1.07 1.11 1.30 

~ .. 

1.68 2.1 i 
1.49 1 *74 
1.28 1.54 

1.68 
1.57 
1.42 

Correlation coefficient 
log,oF, vs R.V. -1.0130 -0.999 - 0 . 9 9 9  -1.01 1 -1.019 4 . 9 8 8  


